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This study explores third-grade students’ strategies for dealing with function tables 
and linear functions as they participate in activities aimed at bringing out the 
algebraic character of arithmetic. We found that the students typically did not focus 
upon the invariant relationship across columns when completing tables.  We 
introduced several  changes in the table structure to encourage them to focus on the 
functional relationship implicit in the tables.  With a guess-my-rule game and 
function-mapping notation we brought functions explicitly into discussion. Under 
such conditions nine-year-old students meaningfully used algebraic notation to 
describe functions. 

Most mathematics educators, ourselves included, tend to view data tables as function tables. 
But what about the students?  Are they learning about functions when they fill out tables? What 
does it take for third grade students to treat multiplication tables, for example, as function 
tables? Can they use and understand algebraic notation for representing linear functions? What 
sorts of activities involving tables might encourage young students to focus on functional 
relations?  

Students begin to deal with (linear) functions and (constant) rates long before they make any 
sense of an expression like y = mx +b.  Certain curriculum materials embody these relations 
without making them explicit in algebraic notation.  A multiplication table, for instance, might 
be thought of as an embodiment of the expression y = mx, where x and y are integers along the 
margins and m corresponds to the number in the expression "times <m> table".  The question 
we raise here is whether children as young as nine years of age can understand functions and 
algebraic notation for functions.   

The studies by Davydov and colleagues (1991/1969) showed that young students were able to 
use and understand algebraic notation such as y = 5x+12.  However, in their studies x and y 
stand for unknowns.  We know of no evidence from their work suggesting that students thought 
of the notation as expressing a multitude of ordered pairs and hence functions; and this is 
unlikely since problems were invariably constrained in such a way as to require that x and y 
take on single values.  To make sure that students are contemplating multiple input and output 
values, so to speak, it is useful to consider situations where the same function is applied 
repeatedly.  Let us look at a sales context first; then we will move to the issue of how it is 
embodied in a function table.  These are precisely the conditions underlying our work with third 
graders as we explore how, in keeping with the U.S. National Council of Teachers of 
Mathematics (2000) Standards, algebraic reasoning and notation can become part of the 
elementary school curriculum. 

In our approach, we treat algebra as a generalized arithmetic of numbers and quantities. 
Accordingly, we view the transition from arithmetic to algebra as a move from thinking about 
relations among particular numbers and measures toward thinking about relations among sets of 
numbers and measures, from computing numerical answers to describing relations among 
variables.  This requires providing a series of problems to students, so that they can begin to 
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note and articulate the general patterns they see among variables.  Tables play a crucial role in 
this process as they allow one to systematically register diverse outcomes (one per row) and 
look for patterns in the results.   

Our initial steps were inspired by the findings of everyday mathematics studies.  When 
computing the price of a certain amount of items, street sellers usually start from the price of 
one item, performing successive additions of that price, as many times as the number of items 
to be sold (Nunes, Schliemann, & Carraher, 1993; Schliemann et al., 1998; Schliemann & 
Nunes, 1990).  If we try to understand their procedure in terms of displacements in a function 
table, they work down the number column and the price column, performing operations on 
measures of like nature, summing money with money, items with items.  Vergnaud (1983) 
describes this strategy as a "scalar approach".  In contrast, a functional approach presumably 
relies upon relationships between variables, often variables of different natures.  The latter 
focuses on how one variable changes as a function of the other variable.  

But when we look closely at street sellers’ strategies we realize that they establish a 
correspondence of values across measure spaces before proceeding to the next case.  The flow 
of thought proceeds from one measure space to the other, row by row.  This is illustrated by the 
following solution by a coconut seller to determine the price of 10 coconuts at 35 cruzeiros 
each: 

"Three will be one hundred and five; with three more, that will be two hundred and ten. 
[Pause].  I need four more.  That is… [Pause] three hundred and fifteen… I think it is 
three hundred and fifty." (Nunes, Schliemann, & Carraher, 1993, p. 19). 

The street sellers' approach indeed involves a linking of a unique y-value to each value of x.  It 
therefore captures the essential idea of a function and can constitute a meaningful and efficient 
strategy to solve missing value proportionality problems.  In school young children also seem to 
prefer using scalar solutions (Kaput & West, 1994; Ricco, 1982).  Scalar solutions can be a 
good start for understanding functions.  But they are limited in scope and typically do not allow 
for broader exploration of the relationships between the two variables (Schliemann & Carraher, 
1992, Carraher & Schliemann, 2001).   

In the classroom study here reported we will look at some specific examples of how third-grade 
students’ emerging understanding of functional relations draws upon and at the same time 
departs from their previous strategies for dealing with quantities and number relations.   

The data come from a broader study aimed at understanding and documenting issues of learning 
and teaching in an "algebrafied" (Kaput, 1995) arithmetical setting (see Carraher, Brizuela, & 
Schliemann, 2000; Carraher, Schliemann, & Brizuela, 2000, 2001).  Our goal was to help 
children build an understanding of multiplication from an algebraic point of view and as a 
functional relationship.  To reach this goal, we designed activities that aimed at shifting the 
focus from scalar relations to functional relations and to general algebraic-type notational 
representation.  Through a discussion of children’s difficulties and successes, as they participate 
in these activities, we will explore some of the issues they face in trying to move from their 
intuitive approaches to a functional approach and from computations to generalizations.   

The Study 
We worked with a classroom of 18 third-grade students at a public elementary school in the 
Boston area, serving a diverse multiethnic and racial community. During the school year, we 
met with them once a week for a period of ninety minutes.  The first six meetings were 
dedicated to additive relations (see Carraher, Brizuela, & Schliemann, 2000).  In the seventh 
week, as the children were working on learning the multiplication tables, we started working on 
multiplicative relations.  Our challenge at this point was to design situations that would allow 
children to understand multiplication as a functional relationship between two quantities or 
numbers.   



  

We used what we knew about street sellers and young children’s strategies to solve price 
problems as a point of departure.  From our perspective, the organization of data for two related 
quantities in a table would provide the opportunity for children to use their own scalar strategies 
but would also allow us to explore with them the implicit functional relationships between two 
variables.  The sequence of tasks we designed was presented and discussed over two weekly 
meetings (classes 7 and 8).  The first two tasks were part of class 7 and the other four were part 
of class 8.   

Task 1: Filling out function tables 
We began by asking children to fill out the table in Figure 1.  Each child received a work sheet, 
but we suggested that they could work in pairs and discuss their solutions, helping each other. 

Figure 1: The incomplete table 

Mary had a table with the prices for boxes of Girl Scout cookies.  But it rained and some 
numbers were wiped out.  Let’s help Mary fill out her table: 

 Boxes of cookies Price 

  $ 3.00 

 2 $ 6.00 

 3  

  $ 12.00 

 5  

 6  

  $ 21.00 

 8  

 9  

 10 $ 30.00 
                                                                                                       

 
Most of the students in the class first appeared to treat each column, items and price, as if they 
were separate problems.  They would fill out column one by counting by 1’s and column 2 by 
counting by 3’s.  Their approach leads to correct answers but does not involve them in thinking 
about the general relationships between price and items.  A few children related the task to the 
multiplication tables they were memorizing and used the latter to fill out the second column in 
the table.  

Task 2: Different ways to go from one number to another 
The remainder of this class was dedicated to an activity where the children had to find different 
ways to operate on a number in order to get to another (e.g., "How do you get from 2 to 8?" and 
"How do you get from 3 to 15?").  This activity constituted an attempt to have children 
exploring the multiple relationships between two numbers in a pair.  We hoped that this would 
later help them to focus on determining the relationship in a function table.   

The first and most popular solutions were additive solutions such as: To get from 2 to 8 you 
"add 6 to 2" or "add 2, plus 2, plus 2."  As discussions developed, children also used 
multiplication as alternative ways to get from one number to the other. 

Task 3: Focusing on any number (N) 
The following week we first presented children with a multiplication table similar to the one 
they had worked with, except for an added "Nth" row.  Our goal here was to encourage children 
to think about the general relationships depicted in the table.  They were asked to answer: What 
do you think the N means?  What is the price if the number of boxes is N? 



  

Again, children easily filled in the blanks by counting by ones in the first column and counting 
by threes in the second. David, the instructor, asked them to explain how they found the number 
that corresponded to 4 and one child responded that he added four threes.  For the same 
question regarding the second row, one child explained that it was three times two and another 
that she had added 4 to 2.  For the Nth row, one of the students, Sara, stated: "add 3 up; 11 times 
3 equals 33; N probably stands for 11."  Other children also considered that N was 11 and that 
the corresponding value in the second column was 33. 

David explained that "N stands for anything."  A child volunteered, "It could be any number."  
After discussion and examples, three children maintained 33 as a response in their worksheets, 
three left the cell blank, five adopted N+N+N or NNN as their response, and seven adopted the 
notation 3N or Nx3.  One girl wrote on her work sheet the expression Nx3 followed by the 
equals sign: "Nx3=". 

Task 4: Breaking the columns’ pattern 
After noting the predominance of column-by-column solutions, we decided to introduce breaks in 
the table sequence (Figure 2), thus hoping to draw children's attention to the functional relationship.  

Figure 2: Filling out a table and generalizing to higher values and to N 

2. Here is another table. Can you fill in the missing values? 

 X Y 
 1 3 
 2 5 
 3 7 
 4 9 
 5  
   
 7  
 8  
 9  
 10  
 
 20  
 
 30  
 
 100  
 
 N  

 

 
This table was more demanding since it represented a function with an additive term (x  2x 
+1).  Children did not spontaneously focus upon the functional relationship and needed external 
help to complete the table.  With help many were able to apply the rule and to complete the 
table. 

Task 5: Developing a notation for the function 
The next step was to focus on a general notation for the function.  David wrote the rule nx2+1 
on the board and worked with the whole class, assigning different values for n and computing 
the result.  The same was done for 3n+2.  He replaced n by different numbers, including zero 
and 1000, and children easily computed the output. 



  

Task 6: Finding the rule from pairs of numbers 
For the next activity, pairs of numbers were given and children were asked to find the rule that 
originated them.  For the first trial of this new task, David wrote 3 and 6 as a first pair and 7 and 
10 as a second pair.  As the discussion below shows, the children found that they had to add 3 
to the first number. 

David: Let’s work backwards, we’ll start from the numbers, and you tell me what 
the rule is.  Can you do that? 

Student: Yes. 
David: All right.  I’m going to start, I’m not going to tell you what the rule is. 
Student: You have to do it in pairs? 
David: Well, yes.  Hold on.  I’m going to start with three […] Then I’m going to go 

to there, to six [writes "3 6"].  OK, attention. 
Sara: Can I tell you the rule? 
David: OK, and now, if I start from seven, I’m going to go to 10 [writes "7 10"].. 
Sara: Can I tell you the rule? 
David: Does anybody have the rule figured out? If I start from five, I’m going to go 

to. 
Sara: Eight. 
David: Yes, I’m going to go to eight.  I think somebody knows the rule!  Jennifer!  

What were you thinking?  What’s the rule? 
Jennifer: Plus three? 
David: Yes!  If I start from n, then I have to go to what? 
Students: (Inaudible). 
David: Three? 
Student: You have to add three. 
David: I have to add three to what? 
Student: To the n. 
David: Yes, to the n.  So how am I going to write that down? 
Students: N plus three. 
David: Yeah!  That’s the rule! 
Students: Oh, we need something harder. 

The children take the rule “N becomes N+3” as applying to all three of the cases that were 
presented.  In this way, the N stands not necessarily for one particular instance as an unknown, 
but as a variable in a description of the relationship between the pairs of numbers. 

The transition from understanding letters as unknowns, to understanding them as variables is 
notoriously difficult, even for adolescents.  However, in the present activity, with a simple 
additive function, they follow the idea with little trouble, as Melissa shows: 

Melissa: Yeah, because you have eleven.  Well.  Lets just say you have ten, then 
you add three more and which…I mean, you have eleven, then you have three 
more, equal fourteen.  And say if you did it with twelve, that equals fifteen.   

David: Hold on.  Twelve becomes fifteen.  Yes.  That’s correct.   
Melissa: And, like the higher we go, the higher the numbers get. 
David: That’s right.  So, could you do a hundred? 
Melissa: Yeah.  
Students: A hundred and three. 
David: That’s great. 
Melissa: And if you do a thousand, it’s a thousand and three. 

Melissa first offers the cases of 11, then 12, and then attempts to generalize: “the higher we go, 
the higher the numbers get”.  This suggests that she is referring to two sets of numbers, the 
numbers chosen (“the higher we go”) as well as the numbers that emerge from applying the rule 



  

(“the higher the numbers get”).  The numbers are connected one to one as ordered pairs; for 
each number-input there is a respective output number.  But she can also mentally scan the 
diverse cases in an ordered fashion and think about how variations in input are related to 
variations in output.  The numbers co-vary according to a remarkably simple pattern: as input 
values increase, the output values increase, with the constraint that the latter are in every case 
precisely three units more than the former.   

In response to the children’s demand to give them “something harder”, David wrote the 
following number pairs (see Figure 3), one by one, and asked the children to guess the rule he 
was using.  

Figure 3: Input and outputs for n 2n-1 

 
The class discusses the possible rule that generates the output numbers from the input numbers:  

David: [As he writes 3 and 5 in the second row] OK.  If I give you a three, you’ve 
got to get a five out.  You think you still know?  You think you know, 
Michael?  

Michael: Yeah. 
David: If I gave you an n [writes "n " above the number pairs] then what, OK… 
Michael: For the first one… 
David: For the first one, how do you get from five to nine? 
Michael: Add four. 
David: You add four.  And if I add four to three? 
Students: No.  
David: You could’ve been right.  Cause that’s one way to get from five to nine 

(adding 4).  However, this rule, it can’t be that rule cause it didn’t work for the 
second one (from 3 to 5).  Because if I added four, this would become seven, 
and it became five.  Let me give you another example.  If I give you a one, do 
you know what you’re gonna get from this? 

James: Oh, I know! 
David: James.  Let’s see if he’s got it. 
James: You have to add two? 
David: You add two?  So if you add two to five you get how much? 
Student: Nine. 
David: No, you don’t get nine.   
Student: Seven. 
David: Actually, it’s not as hard.  If I give you a one, you have to get out a one. 
Student: Oh, one times one equals one. 
David: One times one would be one.  But five times five isn’t nine. 
Jessica: Sara knows! 
David: Sara, give us a, clarify for us. 
Sara: Two times that number minus one. 
David: Wow!  Wow!  Sara, come here, write this up here.  Write it up here, if you 

can generalize it. 



  

Sara: [Writes "x 2 – 1" above the second column of numbers, following "n "]. 
David: Write the n in front so we remember, n times 2 minus one.   
Sara: [Completes the notation "n n x 2 – 1"]. 
David: Have you guys got this figured out?  Did you see what she did?  So you 

have to use which times table, Sara?  This is really something! 
Students: Harder, harder. 
David: Pardon me? 
Students: Harder, harder. 

Children who proposed additive rules such as “n  n+2” may have been thinking only about 
particular cases.  However Sara’s rule, “n n x 2 –1”, does not merely describe the relationship 
between two known values but encompasses each of the cases listed.  It is remarkable that she 
does this in the very lesson in which mapping notation is introduced. 

Subsequent discussion in the same lesson showed that only Sara and a small number of her 
peers were able to generate such “linear function” rules from multiple instances.  However, 
students in the class understood how the rule could account for each of the individual instances.  
In fact, once a student would propose a rule, other students, including those who did not 
themselves generate such rules, eagerly volunteered to argue whether the rule worked for the set 
of instances or just for isolated cases.  In this sense they were able to begin to think functionally 
and to make use of functional notation.  Furthermore, when dealing with simpler, additive 
functions, such as n  n+3, most students were able to meaningfully generate and use algebraic 
notation for functions.  

Students may not quickly learn to identify linear functions underlying data.  Despite this, and 
perhaps because of this, linear functions can begin to be explored as extensions to students’ 
work with multiplication tables.  Further, even though not all third grade students will initially 
identify and represent the functional relationships underlying data tables, they can learn 
significant things in the resulting discussions and slowly work functional notation into their 
arsenal of representational tools. 

Discussion 
In introducing a data table with number of items and prices, we found that the students could 
correctly fill in the tables, but they did so with a minimal of thought about the invariant 
relationship between the values in the first and second columns.  Several changes were made in 
the structure of the table and the purposes of the activities to discourage students from working 
on each column as if it were unrelated to the column next to it.  

A guess-my-rule game helped students break away from the isolated column strategies they had 
been using.  One important feature of the game was that there was no discernible downward 
progression from row to row.  This seemed to deter students from viewing the data from a 
within-measure perspective. 

It surprised us that the 9-year-old children were content to look for patterns and functional 
relations among pure numbers devoid of quantitative reference.  They did not need concrete 
materials to support their reasoning about numerical relations and could even deal with 
notations of an algebraic nature.  In fact, algebraic notation seemed to help them move from 
computational aspects to generalizations about how two sets of values are interrelated. 
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