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This paper explores some aspects of students’ conceptions of cubic functions of

the form . This was done by analyzing students’
responses to a problem dealing with family of functions. On the basis of these
answers, a series of hypothesis was formulated. These hypotheses were corrob-
orated with a second group of students who solved the problem and were asked
to correct and comment a pre–arranged solution to it. It was found that an
important proportion of students develops a consolidated and invalid concep-
tion of the cubic function with special characteristics concerning its domain.

 

Introduction

 

In this study we wanted to explore some aspects of students’ conceptions of cubic
functions of the form . We did so by considering the perfor-
mance of a group of university students solving a problem dealing with graphics of
cubic functions. Our purpose was to describe some characteristics of the students’
graphics and to explore, on the basis of those graphics, some aspects of the students’
conceptions of the cubic function. The study was done in two phases. During the first
phase, we constructed a set of categories that enabled us to characterize the students’
graphics and we formulated some conjectures concerning the possible conceptions
that were behind that behavior. During the second phase, working with a different
group of students, but the same problem, we confirmed the previously found charac-
terization for the graphics and were able to test the proposed conjectures. We formu-
lated as well a partial description of the students’ conceptions of this type of cubic
function.

In what follows we discuss some conceptual aspects concerning the understanding
of the notion of function, in general, and of the cubic function, in particular. We then
describe in detail the instruments we used to collect, codify and analyze the students’
performance. Finally, we present the results found and draw some conclusions.

 

Understanding of the notion of function

 

The understanding of the notion of function has drawn some attention recently (Harel
& Dubinsky, 1992; Tall, 1991; Romberg et al., 1993; Leindhardt et al., 1990). In par-
ticular, Sierpinska (1992) has produced a list of acts of understanding and epistemo-
logical obstacles related to the notion of function. For example, an act of
understanding concerning the representation of functions is the discrimination
between different means of representing functions and the functions themselves. An
epistemological obstacle concerning the graph of a function is that the graph of a func-
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tion is a geometrical model of the functional relationship. It does not have to be exact
and can contain pairs (x,y) such that the function is not defined for x.

The notion of 

 

representative

 

 (Schwarz & Dreyfus, 1995) has become important as
technology is used more widely in the teaching of functions. This notion has to do
with the fact that a given function can have multiple representatives within a given rep-
resentation system. For example,  and  are
two representatives of the same function. Likewise, a function can have an infinite
number of representatives in the graphical representation system, depending on the
range and scale used for the axis.

The process of understanding can be seen as proceeding by “states”. Each state
corresponds to a certain partial knowledge (a 

 

conception

 

) that has worked with previ-
ous experience and that allows the student to feel comfortable while solving tasks. For
a given type of problems a conception can correspond to either a valid or invalid ver-
sion of the mathematical knowledge at stake. We will say that a conception (valid or
invalid) is consolidated whenever the student having it “feels comfortable” putting it
into play while solving problems. As it will be explained later, this sense of “comfort”
can be observed through the coherence of the answers of the student to a series of
related questions. On the other hand, a conception can be in an unconsolidated state.
When this happens, partial knowledge has not been established and the answers of the
student do not follow a coherent pattern.

 

Understanding of the cubic function

 

There is little research made on the understanding of the cubic function. Curran found
that students exhibit links between their understanding of the graph of a cubic function
and their understandings of the graphs of linear and quadratic functions (Curran,
1995).

We considered a specific form of the cubic function: . We
did so, because the precalculus course under study followed a strategy of teaching
translations and dilatations in the construction of graphs of functions. The general
form of the cubic function  is introduced later on.

We were interested in exploring some aspects of the students’ conceptions of the
cubic function. In particular, we wanted to see if it was possible that students develop
consolidated but invalid conceptions concerning the domain and range of the function.
This interest came from a first phase of the study in which students were asked to
solve a problem concerning family of cubic functions (the problem is shown later). We
found that many students draw graphs similar to those shown in table 1.

The proportion of answers of these types made us think that they could be a conse-
quence of an invalid and consolidated conception of the cubic function, instead of sim-
ply being a consequence of drawing mistakes or specific circumstances related to the
specific problem at hand. This conception could be expressed as follows:

 

The domain and range of the cubic function is a proper subset of the real num-
bers and can be seen as an interval around the inflection point of the function.

 

We felt that if a student has this kind of conception, then he/she could agree with situ-
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ations as the following:

 

▲ 

 

If the inflection point of the function is on the y-axis or close enough to it,
then the graph crosses that axis (Graph types 3, 4, 5, 6).

 

▲ 

 

If the inflection point of the function is not close to the y-axis, but it is not
too far away, then the graph of the function has the y-axis as one of its
asymptotes (Graph type 2).

 

▲ 

 

If the inflection point is far enough from the y-axis, then the graph of the
function has other asymptotes (Graph type 1).

 

▲ 

 

If the inflection point of the function is far enough from the x-axis, then it
does not cross that axis (Graph type 3).

In order to test these hypotheses we decided to work with a different group of students
and the same problem. This was the second phase of the study.

 

Context and data collection

 

The study was done with first–semester students of a Precalculus course in a private
university in Bogotá, Colombia. This course was taught on the basis of a curriculum
innovation that involved graphic calculators (Gómez et al., 1996). The course concerns
an introduction to the study of functions with special emphasis in the relationship
between the symbolic and graphical representation systems and problem solving. One
fourth of the course deals with linear functions, followed by the study of cuadratic,
cubic, polynomial, rational and radical functions. Special attention is given to the
graphical role of the parameters in the different possible symbolic representations of a
function.

Some results are already known concerning this curriculum innovation. Mesa and
Gómez (1996) found no differences in some aspects of understanding between the stu-
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Table 1: Types of graphs produced by students
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dents who took the traditional course and those who took the curriculum innovation.
Gómez and Rico (1995) found that the students of this group participated more
actively in social interaction and in the construction of the mathematical discourse,
changes that can partially be attributed to a different behavior of the teacher. Even
though she changed her behavior, Valero and Gómez (1996) found that the teacher
could not change completely her beliefs system. Carulla and Gómez (1996) found that
the teachers and researchers who participated in the curriculum innovation underwent
significant changes on their visions about mathematics, its learning and teaching.
Gómez (In press) found that the effects of technology use on achievement depends on
the way it is integrated into the curriculum.

The problem used was one of the problems scheduled to be done at the time cubic
functions were taught in the course. We wanted to explore whether students of this
new group produced graphs similar to those found in the first group; and whether
those graphs were a consequence of a consolidated but invalid conception of the cubic
function. In order to perform this exploration, we collected and analyzed three differ-
ent types of information: 1) the answers of the students to the problem; 2) the way stu-
dents corrected and commented a solution to the problem produced by us that
contained most of the mistakes corresponding to the consolidated and invalid concep-
tion; 3) the comments made by the students to a series of statements related to the
above solution and to the hypotheses presented earlier.

The last two instruments were designed in order to make sure that the mistakes found
in the graphs were not a consequence of drawing problems and to induce the students
to put into play their conceptions under different circumstances concerning the same
problem. The problem proposed to the students was the following.

The following is an example of the solution to the problem that the students were
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asked to correct and comment and the statement they were expected to comment.

The following are the rest of the graphs and statements that were proposed to the stu-
dents for correcting and commenting on.

 

Analysis

 

For the solution of the problem the students were divided in two groups: 13 students
were asked to solve problem 1 and 9 students, problem 2. All students were asked to
correct the solution proposed and to comment on the statements proposed. We calcu-
lated the following percentages:

 

▲ 

 

The percentage of students that, having produced a graph, drew a graph of

1) a. The point A corresponds to a graph
whose inflection point is .
Its symbolic representation is

.

The graph does
not cross the y-
axis.

1) b.The graphs do
not cross the x-axis.

1) c. The graphs
seem to have two as-
ymptotes.

1) d. Some graphs
cross the y-axis and
others do not.

2) e. The graph
has restricted do-
main and range.

2) f. Some graphs do
not cross the y-axis.
The domain is the
same for all the func-
tions.

2) g. For big values
of y the graphs join
each other.

2) h. Those graphs with big enough val-
ue of k do not cross the x-axis.
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one of the types expected, as described in table 1.

 

▲ 

 

For each answer corrected, the percentage of students that marked it as cor-
rect.

 

▲ 

 

For each statement commented, the percentage of students that accepted it as
valid.

Furthermore, an analysis of each student’s answers was made on the basis of his com-
ments to the statements. The purpose of this analysis was to explore the coherence of
the comments of each student to the series of statements, and be able to conclude
about their conceptions. We considered only those students who commented at least
three statements. We considered that a series of answers were coherent if at most one
comment was contradictory with the other comments (from the point of view of their
validity).

 

Results

 

Table 2 shows the percentage of students that, having produced a graph, draw a graph
of one of the types expected, as described in table 1.

All students marked as correct all the answers presented in the solution proposed to
them. Table 3 shows, for each statement commented, the percentage of students that
accepted it as valid.

Table 4 shows the percentage of students that had a coherent (valid and invalid) series
of comments to the statements, together with the percentage of students who proposed
an incoherent series of comments. There were 9 students with less than 3 answers. For
the other 10 students, the percentages were as follows.

 

Discussion

 

The results show that students of the second group continue drawing graphs of the

Graph type 1 2 3 4 5 6 7

Percentage 79 100 8 75 78 88 46

Total number of answers 19 1 12 12 9 8 13

Table 2: Graph types percentages

Statement 1.a 1.b 1.c 1.d 2.e 2.f 2.g 2.h

Percentage 32 54 57 38 56 75 11 75

Total number of answers 19 13 14 8 9 4 19 4

Table 3: Comments percentage

Coherent invalid Coherent valid Incoherent

Percentage 40 50 10

Table 4: Coherence percentages



types found with the first group of students. When asked to correct the pre–arranged
solution, all students marked as correct all the invalid answers proposed to them. How-
ever, when asked to comment on the statements proposed, the reactions of the students
differed. Many answers were found in which students did not agree with the state-
ments. Nevertheless, this was not a consequence of a “random” reaction from the stu-
dents to the statements. The analysis of each students’ comments to the series of
statements show that the students can be categorized into three groups: those with a
coherent and invalid series of answers, those with coherent and valid answers, and
those with incoherent answers. The relevant point here is that the group with coherent
but invalid answers represents an important proportion of the total group. This leads us
to think that many students can develop a consolidated and invalid conception of the
cubic function of the form . However, our hypothesis concern-
ing the range of the cubic function is not clear, given the results to questions 2g and
2h.

Conclusions
There might be many reasons why students develop this type of conception of the
cubic function. From the mathematical point of view this seems to be a natural situa-
tion. Since cartesian planes are traditionally drawn with the same scale in both axis
and the cubic function grows rapidly, the part of the domain of the function that can be
“seen” in the graph is usually a subset of the real numbers. Furthermore, it seems that
most textbooks and teachers tend to consider cubic functions for which .

Teaching and textbooks do not help either. We found that the textbook used in the
course did not present graphs in which it could be seen that the domain were the real
numbers. Furthermore, when checking some teaching materials drafts from one of the
teachers, we found graphs similar to those drawn by the students.

It is very likely that this problem exists with cuadratic functions as well. As a mat-
ter of fact, when performing informal interviews with the students, one of them justi-
fied the “asymptotic” behavior of the cubic function as being the same as the one for
the cuadratic function. In this sense, one can say that there is a link between the under-
standing of the cuadratic and the cubic function. However, even though we do not have
data to justify, we think that this link is broken when cuadratic and cubic functions are
compared to linear functions, a fact that would not corroborate Curran’s results in this
respect.

One may argue that the problem proposed to the students was about family of func-
tions and not about the domain and range of the functions. Therefore, students could
have been more concerned about answering the questions and correcting the answers
proposed with respect to what they considered relevant in the problem and this might
be the reason why all of them marked as correct all the answers proposed to them.
However, this was not the case with the statements they had to comment on. Those
statements referred to the graphs themselves and made no direct connections to the
text of the problem.

Finally, technology might have played a role as well. The “window” problem iden-
tified by Schwarz and Dreyfus with their “representative” concept might induce stu-
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dents to construct their invalid conception. This is a somewhat paradoxical situation
given that graphic calculators and computer software allow students to easily change
the scale and range of the axis. However, this could be evidence of the fact that stu-
dents do not take advantage of those features.

The learning difficulties found in this study would not be very important if they
could be interpreted as a consequence of drawing problems related to the specific con-
text of the task at hand. However, as we have found elsewhere (Carulla & Gómez,
1997), when technology is involved, students tend to construct their understanding
based mainly on the graphical representation of the concepts. This might be the reason
why we found these consolidated and invalid conceptions.
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